\0-AOS4 585  UNION COLL SCHENECTADY N Y INST OF ADMINISTRATION ANeeg "
MOVING AVERAGE MODELS==TIME SERIES IN M=DIMENSIONS.(U) T = '/¢ 12/1

JAN 78 D A VOSS, C A OPRIANs L A AROIAN NODO14=77=C=0438

NL

UNCLASSIFIED AES-T7802
1

6 -78

’ END
en




F—--ﬂ

i el FE
T

= L
Ji2s Jlis e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




.m

AD No

ADAO54585

"0 FILE copy

e 1

‘“R ‘-' & .L.ru-.;{\ v i i

MOVING AVERAGE MODELS--TIME SERIES
IN M-DIMENSIONS

AES-7802

ADMINISTRATIVE AND ENGINEERING SYSTEMS MONOGRAPH

l Approved for public releasey |
Distribution Unlimited




AES-7802 ERRATA SHEET
MOVING AVERAGE MODELS--TIME SERIES IN M-DIMENSIONS

Page 1, Abstract, line 2, insert (see Box & Jenkins, 1976) after "well known.

Page 2, line 4, E(zx,t) should be E[zx,t]'

]

Page 2, Eq. (1.2), brackets are missing in E[ax,tax+n,t-k

Page 3. The following should appear as a caption below the figure:

1 2

r
z = +
le,xz,t Z z 2 ¥ ,kax +n_,x_+n_,t-k ax X4t

n,=-1 n =-2 k=1 Pyrfgeft Eyiiy ¢85 0 1'%

spatial order four in direction x., order two in x

1 2°

"Whether or..." should begin a new paragraph.

Page 3, line 2 from bottom of page "at" should read "as."
n -n
Page 4, line 1, a comma should precede Fxm and a comma should follow Bx
m m 1
Page 4, line 14, should read X si'
i=-m

1

2

Page 9, insert following Eq. (2.1.9) "Further since 001011= ‘°1o°a)/°§'

and pll only,

then we find 01=.(62p01)/p11 and in terms of 001

W e
- + -
% "11“’11\/l 4(Pgy*Pyy)

2 2
2(Pp1*P11)

(2.1.10)

The advantage of (2.1.9) over (2.1.10) is that 61 and 62 are unambiguously

determined by plO , and 001." Also change original (2.1.10) to (2.1.11).

¢ Pyy

Page 10, following (2.2.3) insert "Note p-ll , because of the sym-

P11

metry of the autocorrelation function in m dimensions."

Page 11, line 15, add after "implies" "l61|<l, again in agreement.
Finally, with 62=63=0 we obtain the MA(2;0,0) MA(2) process of Box
and Jenkins, and (2.2.5) implies..."

Page 11, line 5 from bottom, add "In (2.2.3) P due to the symmetry

21 P=11
of the autocorrelation function in m dimensions."

(over)
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Page 14, following (2.4.3), add "Note p,,=0_,,."

Page 16, following (3.1.2), add "Note Y,;,=Y;_ ;4"

Page 16, following (3.1.3), add "Note 0110=pl—10'"

: " LU " = =

Page 18, line 12, after "zero" insert "Note Y1017Y-101" Yo11"Yo-11’
- "

and ¥130™1-10°

Page 20, line 13, following "autocorrelations" add "Note that

Y1017 Y-101" Yo11™Y0-11" Y1107 Y1-10" Y1117 -111" Y1-117V-1-11°
Page 21, line 17, should read "eralize to m dimensions under proper

restrictions."

Page 22, add the following reference:

Taneja, V., & Aroian, L.A. (1977). Time series in m dimensions,
autoregressive models.
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ABSTRACT

Stochastic models for discrete time series in the time domain
are well known but such models lack consideration of spatial de-
pendency. We expand on their work by constructing spatially depen-
dent moving average models. Definitions of order, stationarity,
invertibility, autocorrelation function, and spectrum are made as
natural extensions of those in zero dimensions and are implemented

in the one and two-space dimensional models.

1. INTRODUCTION

We describe a general linear stochastic model which supposes

a time series to be generated by a linear aggregation of random

v

shocks at various temporal and spatial locations. Letting x = SON For
(xl,x ,.+..,%X ), an m-dimensional vector, the general Moving Wii'a Section
2 m £l §action [
Average (MA) model of m-dimensional time series is defined by T o
T LTR TS, PRO—

By it AT
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o« @
-
Z = a + a (1-1)
x st ng-m klen,k x+n, t-k X.E
(o]
where n = (nl,nz,...,nm), z denotes the repetitive sum over each
n==C2
L] oo 0 [e<]
component of n (i.e., Z = z S e Z Z ), and z =z =
n=-o ==00 n == n =~ xft x,t

E(zx t) is the deviation from the mean. The white noise process
’

a_ . may be regarded as a series of independent random shocks which

drive the system, so that their autocovariance function is:

Oaz, n=0 and k=0

= E a (1.2)

Yn,k d x,tax+n,t—k=

0, otherwise
and hence the autocorrelation function of white noise has the par-

ticularly simple form
1, n=0 and k=0

0 = g (1.3)
n,k 0, otherwise
We also assume that Ex ¢ is a weakly stationary process, i.e.,
’
el2 1 <wand elz. % 1=0% (1.4)
X, t x,tl y,t2 z |x-yl,|t1-t2|

In this paper we explicitly focus our attention on the special
case of (1.1) in which only a finite number of the coefficients are

nonzero, that is:

r
‘z = E + .
LA kzlwn,kax-m,t-k .t g

If in equation (1.5) all of the coefficients, Y , are nonzero,

n,k
the process is called moving average of temporal order r and spa-
tial order pj + qj in each space direction xj. l1<3j<m For

example, lettingm = 2, p= (2,1), q = (2,1), and r arbitrary, we

have the following representative scheme:

__a s




2
X x X X
—3 - 20— »”® %xl
X X X X
1 2 T
z iy W a +a
' ot e 5 . S i + g
xl xz n2=_1 nl:_z B nl,nz k xl nl,x2 n2,t k xl,xz,t

spatial order four in direction X0 order two in X,. Whether or
not all the coefficients are nonzero, it is easier, from the anal-
ysis viewpoint, to represent the process (1.5) in terms of shift
operators. The backward shift operator in time, Bt' is defined

by

o

e T L

z
Bt X, t

while the backward and forward shift operators in spatial direc-

tion xi, denoted by Bx and Fx respectively, are defined by

i i

Bx.zx,t > zx-G.,t

i i

_ : (1<i<M)

kx.zx,t * %xab_ ¢’

i i

1, i=j
where 61 = (611. 6i2.---r Gim)and %i_ =
’ 0, i#j.

Powers of these operators are defined in the usual manner, for

example,

-~

z =z .
X,k . Phst x,t) zx-zd.,t
i i 1

In addition, we note that the operator Bx is the inverse of Fx v

that is, B-l = Fx . In terms of these shift operators, the .
process (l.é) canlbe reformulated at
q r
~ k
2, .=+ ) T rFB)a (1.6)
x,t Au~p kel n,k x t x,t
s ST = —




.

where F: I rx), rxm) = (B, lax £ . 8 ™)
1 2 m 1 2 m
-n =-n -n
@ ETE = p tn 2B e
bR ' X X t
1 2 m
Defining
d = n_k
¥@® _,8) =1+ ) IV .FB (1.7)
X t : “.'n,k & t
n=-p k=1

the moving average process

zx,t = y(Bx'Bt)ax,t (1.8)

can be thought of as the output"ix t from a linear filter with
’

transfer function W(Bx,Bt) when the input is white noise ax ¢
’

Since the expression for W(Bx,Bt) is finite, no restrictions are
needed on the parameters wn X to ensure stationarity. The in-
’
vertibility condition for the moving average process may be ob-
tained by writing (1.8) as
=1 ~
= B )z .
.t - (Bx' t) %y €

Extending the results of Box and Jenkins it can be shown that, for
m

invertibility, II(B_,B ) = W-I(B ,B,) must converge on X S.,
x t Get i=-M i
where
- . S
Sy = {B,: (B [s1}
= : <
S_, {Bxi |Bxi|_1}
(lsi<m)
s, = 4fr sfF  lsi) -
i X, X,
i i

The autocovariance function of a MA process may be obtained

by multiplying through (1.6) by Z , where £ = (11,22,..., Qh)

x-2,t=k
and taking expectations. A more convenient way of obtaining the

autocovariances is often via the autocovariance generating function

Eae %k
BB = ) ] Y kBB ¢ (1.9)

f==00 k==00

in which it is noted that YOO' the variance of the process, is the

0.0

coefficient of Bth =1, while Yy K is the coefficieat of both
" .




Biﬂt and of B;QB;k; as in Box and Jenkins, it follows that
(B ,B.) = g° ¥(B ,B) ¥ (F ,F,) (1.10)
e e ™ x't S e :

The autocorrelation function in m dimensions is symmetrical in
each variable.

. -i2nf
It can be shown that if we substitute Bt = e and

-i2ng+ : ; < 2
B = e qJ, where i = v-1 and 1<jsm, in the autocovariance

X.
J
generating function (1.10), we obtain the power spec-

trum. Thus the spectrum of the MA process is

—12ng'e-12ﬂf elZﬂgleLZNf) (1.11)

p(g,f)=20§ Y(e )Y (

2

-i2m -i2
= 20 [Y(e i el

’

where 0<fsh, 0<g <k (1<jsm), and e el R e

~i2m -i2m ~i2m
e qz,.-qe qm' e x4 f).

In sections two and three we analyze one-dimecnsional and two-
dimensional models, respectively. 1In both sections we have fo-
cused on models whose spatial and temporal orders do not exceed
two. Section four contains some general remarks and indicates
areas where more extensive research is needed. The following the-

orem generalizes a corresponding result for MA in zero dimensions.

Theorem: If the conditions for invertibility are satisfied, then
every finite MA process in m dimensions may be ex-

pressed as an infinite AR model in m dimensions.
2. ONE-DIMENSIONAL TIME SERIES

In this section we consider moving average models of one-
dimensional time seris~ with temporal and spatial orders not
exceeding two. For onvenience and easy reference we let x=x1.
and denote by MA(r;pl'ql) the moving average model for one-
dimensional time series of temporal order r and spatial order

p1+ql; recall that p1 and q1 denote the maximum powers of the




e

operators Bx and Fx occurring in (1.6), respectively. This nota-
tion is an attempt to be consistent with that in Box and Jenkins,
who analyzed zero-dimensional time series with moving average
models of various temporal orders, that is, MA(r)~MA(r;0,0); this
equivalence means that since the maximum powers of the spatial
operators are both zero, and Bii FZE 1 (identity operator), we
are virtually looking at the same point at different times.

Formally, from (1.6) we find that

ql r nl k
z = + B . <
Tt ik 3 Z_ klenl,kFx e e A2 1)
1 ¥
Thus with pl=ql=0, we obtain
z = + + bt z T8
zx,t dx,t ¢01 ax,t—l l‘}02 ax,t--2 u)()r ax,t-r (2.2}

Deleting the first subscript in each case, as _ T depends only on
’

t, results in the zero-dimensional moving average model in Box and

Jenkins, namely:

P = & + vt . .
Fe = atba st 9%z L )

There are five general "spatial" models described by (2.1)
where lSp1+qls2; we represent these diagramatically below, where

order refers to the spatial order:

x-1 X
MA(r;1,0): First order backward . .
g X x+1
MA(r;0,1): First order forward S .
-1 X x+1
MA(r;1,1): Second order forward-backward ey S e
x=-2 -
MA(r;2,0): Second order backward . x.i G
X x+1 +2
MA(r;0,2): Second order forward —_——— . x._u_

As indicated previously, we will restrict our attention to the
cases r=1,2; this results in a set of ten models of which we will

analyze a subset.
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2.1 The model MA(1l;1,0). From equati = (2.1) we obtain
0

1 n,
2, =(1+ ) E Vo Ky By 2, . (210
nl=-l k=1 "1

=a_+ a + "
PR T Tl T TR

For convenience, and to indicate that we are using a finite set

of weight parameters, we change symbols, letting wOI =—61 and

LT ="02' Then (2.1.1) becomes

Zz =(1-C€ - =0 ; 5 =il
zx,t (1 )lBt eszBt)ax't O(Bx Bt)ax,t (251.2)
Multiplying through (2.1.2) by zx-Z,t—k we get
T o PR P [ T O Tl L S

(2.1.3)

On taking expected values in (2.1.3) we find the variance of

the process is

2

2
2)0a (2.1.4)

2 2
Yoo—cz-(1+01+e

and
2 2 2
L = = (
Tor™ %1% Yio"%1 %% V9%
while all other autocovariances are zero. Thus the autocorrelation

function is

P e ARSI PL R e R
o1 IR [ e gL P
1+61+62 1+el+e2 1+81+62

all other being zero.
To illustrate the technique of obtaining the autocovariances
using the autocovariance generating function (1.9),

W(Bth)=O(Bx,Bt)=l-OlBt—GszBt (2.1.6)




is substituted into (1.10) yielding

2 -1 -1 -1
B _ L} - .1.7
Y(B, /B )=0 (1-6,B 0B B ) (1 0,8 "-0,8 B ") (2.1.7)

2

2
l+62)

2 -1 -1 -1 -1
=g [-GZBX B, +61925x -OlBt +(1+6
-613t+91625x-625xet e

Comparing (2.1.7) with (1.9) and noting that y_;_; =Y;1,

Y—lO =Y10, and YO—l =Yo1r W€ obtain the same results as listed in
(2.1.4).
Substituting Bx=e-l

erating function (1.9), with W(Bx,Bt) as in (2.1.6), we obtain one

27 -12Tf .
2 and Bt=e it into the autocovariance gen-

half of the power spectrum. Thus the spectrum is

p(q,f)=20§|W(e_12ﬂg,e-12ﬂf)lz (2.1.8)

=202\l—6 e—12'nf_e e—12ﬂge—12nf‘2
a 1 2

=20§ [1+02+62

1 2+20182c052ﬂg

—2{91c052nf+62c052ﬂ(f+g)}]

0<f<k; 0sg<h

For invertibility, the generating function H(Bx,Bt)=O_l(Bx,Bt)
must converge for lBtISI and IBXISI. Since
§ns i 3
T Jgd
= - + B =
M ,B.)= [1-(6,+6,B )B, ] j=Zo (©,+6.8 )78),
we see that for invertibility,

|6,+0,B, [<1 and |[B_[s1.

Consequently, the parameters of the MA(1l;1,0) process must satisfy
|01|+|92|<1 to ensure invertibility. If the autocorrelations are
known we can solve for the parameters 01 and 92 from equation

(2.1.5) even though they are nonlinear; for other models we may




need to use an iterative process. In the present case,

P10

Po1

P10

0 | Sm——— =

' (2.1.9)
P11 4

1f any of the autocorrelations are zero, then from (2.1.5), 81

or 02 is zero, the model reduces to the zero dimensional case
and we need to solve a quadratic equation for the nonzero
parameters.

Finally, we wish to point out that the analysis of the forward

model MA(1;0,1) given by

S
z_  =(1+ ] F "B, )a (2.1.10)
x,t n1=0 k=i nl,k x t x,t

=a (p

+ +
vt Pon Sester Vo Paei e

=(l-GlBt—63Fth)ax,t

-0 =-0

Dar™ %7 W30

is very similar to that of the MA(1;1,0) model. The results are
analogous with the paramter 92 replaced by 93 and the operator Bx

replaced by Fx.

2.2 The model MA(2;1,0). From (1.6) we obtain

0 2 nl X
z =1+ v .F 'B)a
%, € n1=-1 k=1 nl,k X & x,t (2.2.1)

- + ) a
8,01 M, t-1V-11%x-1, t-1"¥-12%x-1, t-2"02%x, £-2
=(1-8.B.-0.B B_-0.B B>-0 B%)a
) I gl o - ¥t d°e x

3 £

=O(Bx’Bt)ax,t'

WEE Vo1 Y gy O Hlgg 0y MW N, Vg
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Substituting into the autocovariance generating function results
in
2 2 2
Y(Bx,Bt)-Oa(l-elBt-GszBt-QBBth 64Bt)
=1 -1 =1=2 -2
-06_B, - -0 -0 A
i 61 t BZBX 3Bx Bt: 4Bt )
Multiplying out this expression and comparing the result with (1.9)

we find the variance of the process is

2 A
=0 =( 0°+6 ag .2
Yoo o e HOoeR o 22 24

and
2 g 2
Y01'('61+0263+0164’°a' YlO_(0102+0304)0a'

a3 2 -G 2
=( 92+6163)0a, Y—ll 0.6 o

Y11 2°4%"

2 2
Y02™"949,r Y;,77939,

while all other autocovariances are zero. Thus the autocorrelation

function is

901= —81+6263+6164 P o 6162+6304 !
: 2,62,02,92 . 02402402402
1+61+ 2+ 3+ 4 1+ 1+ 2+ 3+ 4
(2.2.3)
oy, a9 POy Ba's :
T e S
(6] (¢
1+61+62+63+64 1+ 1+02+63+)4
2o -04 s -03
02 015"

2 Dol o) P R S
67 +
1+)l 0 +03+94 1+91+02+03+64

From (1.11), the power spectrum for this model is given by

e Ve ik L & ki SLANE ]
i2nf_ ,e 12ﬂge 12ﬂf_e3e 12nge 14“‘—64e i4 flz

O<f<l}; 0<g<5 (2.2.4)

2
p(g,f)-zoall-ele 0

———'-_'—""_ -~ . IE‘ e — -




For invertibility, H(Bx.Bt)=Crl(Bx,Bt) must converge for
lBt,Sl and st151. Equivalently, the roots of
2
=]~ + - +
O(Bx'Bt) 1 (01 Bsz)Bt (64 03BX)Bt
must be outside the region IBtlﬁl and IB ISI. Hence the param-

X
eters must satisfy:

¢ S
%f%+%+%ﬂq %_%+%+%ﬂ4
(2.2.5)
91-62—63+6451, -91+62-63+9451,
|63|+|64lsl.

Note that as a consequence of these inequalities it follows that

[el|+|62l52.

Setting 63=04=0, we obtain the model MA(l;1,0) discussed pre-
viously. From (2.2.5) with 8,=0,=0 we obtain |01l+[02|f1, which
agrees with the invertibility condition for the MA(1l;1,0) modecl.
In addition, note that with 92=03=94=0 we obtain the MA(1;0,0)

~MA (1) process of Box and Jenkins, and (2.2.5) implies

= -0 s 0,]s
0,+0,<1, 8,-0, s1, ])4| Xy

which is also in agreement. If in (2.2.3) the autocorreclations are
known, we get a nonlinear system of six equations to solve for the
parameter ei, 1<i<4. Certain dependencies exist among the auto-
correlations as in the previous model, and the resultant system

may be solved iteratively.

2.3 The model MA(1;2,0). From (1.6) we obtain

b g,
7 =(1+ P F "B )a
Bk n =2 k=1 Rk X (2.3.1)

=2 + é
aat i A g Y e ™am %pag, e

=ax,t'01ax,t-1'ezax—1.t-l'esax-z,t-l
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2
—(l-OlBt-ezﬂth-eleﬁt)ax't

=0&Bx,Bt)ax't,

where Vg, =-Bl, Vo1 =-62, and w_21 =-63. Substituting into the

autocovariance generating function we find
Y(B_,B )=0%(1-6.B_-0.B B -6.82B_)
x t a It "27xt I xt

2 =1

= PR N S
(1-8,B, -6,8 "B 6.8 “B.").

Multiplying out this expression and comparing the result with (1.9),

we find the variance of the process is

2 B o gl
Yoo—oz—(1+el+62+63)oa
and (2.3.2)

2
Y ?—eloar Y =-0

—
—
[ S]

01

L8] DQN

2
Ylo—(6162+0293)oa, 721~—030

. 2
20791939,

while all other autocovariances are zero. Thus the autocorrela-

tions are given by

P, = ‘el Py, = _62
01 i s L T 1o DD D
1+91+92+63 1+61+62+03
(2.3.3)
T 9,8,+0,8, gt .
10 220 9L e Bap = TR T T
1+61+92+92+63 1+91+62+e3
s e193
20 I
1+01+62+63
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From (1.11), the power spectrum for this model is given by

g} O LR e I SN
p(g,£)=20>]1-0 e 120 o ~i289 ~AdWE o idng -iowt

2 3 (2.3.4)

0sf<kh; 0sg<h.

For invertibility, H(B ,B )=0~ (B Bt) must convetge for
|B |s1 and [B |s1. since O(B B ) 1- (O +0,B +0, B )B,, inverti-
bility is ensured if |6 +6 B, +6 B |<l and |B |<1 Thus the param-
eters must satisfy
|61+62+03|<1, |01-02+e3|<1,
0 02

3 2 2
and if 56— < 1, then [8,- ZE;I <k

2.4 The model MA(1;1,1). From 1.6 we obtain

' 1 "ok
=(1l+
z om0t ] Z L ,kFx B le.e (2.4.1)
n1=-l k=1

+
A ™o S ea1™eld S eV Ar, 61

e -6
& 0% -1702%1, -1 % %1, -1

=(1-6 B -6 B B -0 Bx Bt)ax,t

SO(Bx'Bt)ax.t'

where w01 =-61. w—ll =-62, and wll =-e3. Substituting into the
autocovariance generating function

2 -1 =2
Y(Bx'Bt) Oa(l-ﬁ B 6 B B 638x Bt)(l -6 B -0 B B G B Bt

and comparing with (1.9), we find the variance of the process is

2. B g By
Yoo™0z= (1+8,+8,+0,)0,

and
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2 R
Y017~ eloa' = ezoa'
2 2 (2.4.2)
= 6 -
Yo=(9 %+8 80, ¥ ;=09
2
T 4%

while all other autocovariances are zero. Thus the autocorrela-

tion function is

A L BB, etk N
01 N 117 215 B
1+6§+62+93 1+61+62+63
6. (6.46.) B (2.4.3)
PP Bt 3
10 2 O Sagy - R
02402 G
1+ it 2+93 1+ l+62+03
b %8
20 D gl
1+01+62+63
From (1.11), the power spectrum is given by
2 -i2mf -i2mg -i2mf i2ng -i2wf |2
=20 -0 v L
p(g,£)=2 a|1 1€ 0,e . Oge # I (2.4.4)
0<f<k; 0sgsh.
e 1
For invertibility, H(Bx,Bt)=0 (Bx'Bt) must converge on X S, ;
i==1

since
O(Bx,Bt)=1-(61+628x+03Fx)Bt, we obtain
|el+ez+e3|<1, |91+°2'°3|<1'

161-92+63|<1, 191-62-63|<1c
or, equivalently, |01|+|62]+|63|<1 as conditions on the parameters.

3. Two-Dimensional Time Series. In this section we consider
MA models of two-dimensional time series with temporal and spatial
orders not excceding two. For convenience, we let x=x

1* Y'Y, and




denote by MA(r;p,q)., where p=(pl,p2), q=(q1.q2). the MA process
of temporal order r and spatial order p1+ql in the x-direction
and p2+q2 in the y-direction.

From (1.1) the general model has the form

(] =]

r a +a . (3.1)
zx'Ylt Zz_m nlg_m kzlw llnzlk x+nl,y+n2,t~k X,¥.t

The special case of (3.1) in which only a finite number of the

coefficients are nonzero results in

o B Z
7 = 3 ) v a +a . (3.2
X, Y.t L ,n.,k x+n_,y+n_,t-k x,y,t
n,=-p, nl— p1 k=1 1 2 1 2
or in terms of shift operators,
q. q
2 1 r n, n
o 1., 2.k
= B
£ o n Z- n Z- kylw ’"2'kFx Ty Py
2 *g Ug ) (3.3)

=Y
(B By'Bt)ax,y,

In addition to the zero-dimensional model corresponding to
p=9=0, and the ten one-dimensional models in each direction re-
sulting by letting pl=q1=0 or p2=q2=0, there are fifty general
"spatial" models described by (3.3) where lfpi+qi<2, i=1,2, and

1sr$2. 1n what follows, we examine three such models.

3.1 The model MA(1;1,1,0,0). From (3.3) we obtain

0 0 1 n

l
i n E—l n E_l kzlw 'n kFx Fy Bt)aXIYI (3.1.1)
1

N

X,¥.t

=a +w

+
X,¥,t 001 ax'y't°l w

-101 ax-l,y,t-l

&yt Veic1l My, ye1,e-2

ax,y,t-elax,y,t-l-BZax—l,y,t-1-03ax,y-1,t-l

-9

*Vo-11

3%-1,y-1,t-1

=(1- Olst OZBth 935 B e B aya )ax'y't
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=O(Bx'By'Bt)a

where ¢001 =—el' ¢_101 =_627 wo_ll - 3, and w_l_ll =-34.
Substituting into the autocovariance generating function

x,y,t’

2
A 2 -0 - ~
Y(Bx,By,Bt) 03(1 elat ZBth 93Bth 94BxBth)x
-1 -1 -1_-1 -1 -1 -1
(1 elat 628t G3BY Bt 64Bx By Bt )

and comparing with (1.9), we find the variance of the process -is

g gl
Yooo—oz—(l+61+62+63+64)0a
and
Y =-602 Y, ..=(60_06_+6 6)02
001 1 a’ '100 172 34" a’
2 2
M01=" %% Yo10™(8193+9,6,09, (3.1.2)
P . 2
Yo11""%3% M10™ %%,
2 3 2
Y111579%% M-107%%%¢

while all other autocovariances are zero. Thus the autocorre-

lation function is given by

-9 8.8 +0.0
0001= 1+02+62162+62 ,p1°0= 1+e;+:2+e:+;2 :
e i 172 3 4
-6 0.6+
Pior” | o8 22 3 o1’ Porc” 123 :263 3" (3.1.3)
1+61+62+63+94 1+61+62+93+64
-6 6.6
Po11 1+ez+e;+92+92' Pr10” 1+92:e;+62+62'
Chbe e ik Caks e
-9
Py 24 2 .2’ P1-10" 65032 .
1+el+02+e3+e4 ] 1+el+02+e3+o4
On substituting Bx=e-i2"gl, B =e-12"qz, and Bt=e-12"f into

(L.11), we find the power spectrum of the process is given by

‘12"91 P

2
p(g.f)=zoa|1-(01-eze *

-i2ng
e 2-6

-i2ﬂg1e-i2ngz)e_i2"flz
(3.1.4)

4e

T —
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For invertibility,
-1
H(Bx,By,Bt)-O (Bx.By,Bt)
-1
= [1-¢( 61+ 928x+ 03By+ 94BxBy) Bt]
0

must converge on X S,
i=2 1

|01+92+o3+04|<1, |91+92-e3-04|<1,

Hence, the parameters must satisfy

|01-ez-93+e4|<1, |61-92+63-84|<1,

to ensure invertibility.

3.2 The model MA(1;1,1,1,1). From (3.3) we find
1 1 13 n. n

- 1 2k
z =(1+ z z Z v F 'F "B, )a
X,y.t n2=-1 nl=_l ksl nl,nz,k x 'y £ OX,y,t

= 8 vt i1t Mt yed, t=1" V11" p1 041

+wl-llax+1,y—1,t-1+W_101ax_1’y't_l (3.2 1)

*Po012x,y,t Y101%x+1,y, t-1"V-111%%-1,y41,t-1

0118, y+1, t-1*Y111%%41, y+1, £-1°

.

Consider the special case where w_1_11=w1_11=w_111=w111=
1 = 6 e = - - -
Letting wOOl L’ ¢_101 92, wlOl 93. wO-ll 94 and w011 85,

we obtain
~ - 2 —6 _6
zx.Y.t ax,y,t 6lax,y,t-l Zax—l,y,t-l 3ax+1,y,t-1
-0 -
4ax,y-1,t-1 0Sax,y+1,t-1
-1 -1
=[1-(0.+H {
[1-¢ it 23x+)33x +64By+658y )Bt]ax'y't

=0(B ,B , 3
( xl y Bt)ax'y't
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Substituting into the autocovariance function
(B_,B ,B )=0>(1-0,B -0.B B -0.B 'B -0B B -0.B_'B B, ) x
ki ™ y't" "a 1t 2xt Ix & 4yt S5y ¥yt

1

t

=1\ =1 =] 1
(1 elBt BZBX B 0 BxB

i =1 =1
e ~ 9 94BY Bt BsBthl

)

and comparing with (1.9), we find the variance of the process is

2 2 2 2.2

2 2
= = 4
Yo0o™0z= (140 + 05+ 03+ 6,+ 600
and
ErRy £ 2
Yoor= %1% Y00=% (8,+83)0,
2 - 2
Y100°792% Yo10"91(84* 8509,
2 2
Y1017 %% Y00 %2939,
3 s W 2
Yo117" %% Y020"4"5%
. =(8.0.40.0.)0°
%-11""%% Tie" " Na%* Y% %
¥: 2
Y1-10 (6204+0305)0a,

while all other autocovariances are zero. From these, we can ob-
tain the autocorrelations.
From (1.11), the power spectrum is given by

-i2ﬂgl+6 ei2ﬂgl

~i i2 -i2m
; v 12ﬂgz+ese “gz)e i2 f|2

(3.2.3)

P(g,f)=[1- (8 +6e +0,

For invertibility,
-1
"‘Bx'By'Bt)—o (Bx,sy,at)
. -1
=[1-( 0,+ ezax+e3px+e4sy+esry) Bt]
2

must converge on X Si; hence we need
j==2

<
|ﬂl+923x+03Fx+64By+95Fy| 1
and
B, Is1, [F <1, [B |a1, |F [s2 .
Substituting in the values *1 for the (dummy) variables results

in a system of inequalities that must be satisfied by the

i
= S —Y L —— —"J--------A..-—»1
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parameters to ensure invertibility. Aroian finds the values of_

Oi in terms of ;he essential correlations pOOl' plo., 020., 001.,
o
and 002., and a’

3.3 The model MA(2;1,1,1,1). We consider only a special
case of this model consisting of the model in section 3.2 except

with a lag of two in time. We obtain

VA = + +
,x,y,t ax,y,t wo—llax,y-l,t-l wO-lZax,y—l,t-2
4 +
w-lOlax-l,y,t-l p-102ax—1,y,t-2 (3.3:1)
+ +
+w001ax,y,t-l wOOZax,y,t—Z wlOIax+1,y,t-1
+ &
102241, y,t-2"Y011%x, y+1, -1 012%x, y+1, £-2

e =—e -
001 01’ lp—101 2 w101 3’ L

3-08' W

Lettinq w w =-651

=11 4' 011
Yo02=" % Y_1027"097 Y102 b=32 V9" Vg3 0ygr V@ CAR Fe-

write (3.3.1) as
. =[1=-(H 40 0 0 0 -
B .t [1-¢ OB LR s B + F )B, (3.3.2)

6 +U +9 a +0 +0 F B
( R P T Ta, X,y t

=
)(B By Bt)ax,y £

Substituting into the autocovariance generating function we
find the variance of the process is
10

2 2
Yoo0o" " (1* ) 91)0
i=1

and
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- (=046 0 +0 0 466 4+0 0 +0 8 )02
Yoon™ (r %40, 0.0 8 60 0 28 08 0)se

(0 0 46 0 46 6 46 2 " 2
Vo= (% 0,40, 000 040 0000, % 407 00,9,40,0.48,0,+0.0, .09,

Yona™ (00,00, 0.00. 0,509, 10, Vi (9,008,000,

=(-0 40 6 48 0 )02 -(0.0 2
LT e R B M i Y_1117(0,84+08g) 07,

=(8,9,.,+0,0 )02

Y-101=('63+6266+9198)°§' Y31 Pa'10"4" %

Tonr™ ('e4+6169+6566)°§’ Y—l—ll=(62610+6468)°i ook it
Yo—11="65+91910+64es’°§' Y012='(99+910)°i

Yo0a™9655¢ Y021=‘94910+9599)°§

Y300~ 05034049519, Y102='(97+ee’°§'
Yozo=(e4es+egelo)°§' Y201=(9299+6367)°a2:’

=0 6 48 ‘
V110" 575%9304%0,0, 51948409,

all other autocovariances being zero; from these we can determine
the autocorrelations.
From (1.11) the power spectrum is given by

-i2Tg i2mg; -i2nga i2ngy; _
p(g,£)=207|1- (8, +6,e Leg e +g,e +gge yo ook

-iang,  d2mg;  -i2ngy i2Tgy  _g4mf, 2
- (66+e7e +68e +69e +910e e ’ i

- e -1

F;r invertibility, H(Bx,By,Bt)=O (Bx’By'Bt) must converge on

X Si. Alternatively, the roots of G(Bx,By,Bt) must be outside
i=-2

2

X S,, and we find

’ i

i==2

6 6+e7ex+ 68Fx+6 9By+6 1 oFy+6 1+6 28x+9 3Fx+ 6 4By+ 0 51-‘y< p I
96+e78x+68Fx+e9By+e10Fy-01-62Bx-03px-648y-65Fy<1'

and
[9g*0,B, 0T, 0T, +0, oy 1 <1
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Setting the variables equal to ‘'l leads to a system of

incqualities in the ten parameters.

4. Conclusions. We have defined the properties of a gen-
eral moving average model of m-dimensional time series. Specific
one-dimensional and two-dimensional models have been investigated.
Further work remains to be done on moving average models of n time

series in m-dimensions.
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